Adaptive Clinical Trials: Enhancing Efficiency and Flexibility in Clinical Research

Authors

  • Prakash Patel Department of Community Medicine, SMIMER, Surat, India

DOI:

https://doi.org/10.55489/ijmr.1202202458

Keywords:

Adaptive clinical trials, clinical research, trial efficiency, interim analysis, innovative trial designs, regulatory compliance

Abstract

Adaptive clinical trials (ACTs) are innovative research designs that allow modifications based on interim data without compromising scientific integrity. This flexibility enhances resource use, patient safety, and evaluation speed. ACTs feature designs like seamless phase transitions, adaptive randomization, and sample size adjustments, making them ideal for complex areas such as personalized medicine and rare diseases. Successful implementation requires rigorous planning, robust statistics, and regulatory adherence. This CME article outlines ACT principles, design strategies, and real-world applications, addressing both their potential to improve trial efficiency and the challenges involved. It aims to empower professionals to apply ACTs in advancing medical research.

References

1. Chow SC, Chang M, Pong A. Statistical considerations of adaptive methods in clinical development. J Biopharm Stat. 2005;15(4):575-91. DOI: https://doi.org/10.1081/BIP-200062277 PMid:16022164

2. Thall PF, Simon RM, Ellenberg SS. Two-stage selection and testing designs for comparative clinical trials. Biometrics. 1988;44(2):537-51. DOI: https://doi.org/10.2307/2531902

3. Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med. 2016;375(1):65-74. DOI: https://doi.org/10.1056/NEJMra1510061 PMid:27406349

4. Food and Drug Administration. Adaptive Designs for Clinical Trials of Drugs and Biologics: Guidance for Industry. 2019. Available from: https://www.fda.gov.

5. Park JJH, Harari O, Dron L, Lester RT, Thorlund K, Mills EJ. An overview of platform trials with a focus on opportunities for tuberculosis research. PLoS Med. 2019;16(2):e1002767. DOI: https://doi.org/10.1371/journal.pmed.1002767 PMid:30901331 PMCid:PMC6430373

6. Angus DC, Berry S, Lewis RJ, Al-Beidh F, Arabi YM, van Bentum-Puijk W, et al. The randomized embedded multifactorial adaptive platform for community-acquired pneumonia (REMAP-CAP) study: Rationale and design. Ann Am Thorac Soc. 2020;17(7):879-91. DOI: https://doi.org/10.1513/AnnalsATS.202003-192SD PMid:32267771 PMCid:PMC7328186

7. Berry DA. Adaptive clinical trials in oncology. Nat Rev Clin Oncol. 2012;9(4):199-207. DOI: https://doi.org/10.1038/nrclinonc.2012.8 PMid:22330688

8. Chow SC, Chang M. Adaptive design methods in clinical trials - A review. Orphanet J Rare Dis. 2008;3:11. DOI: https://doi.org/10.1186/1750-1172-3-11 PMid:18454853 PMCid:PMC2422839

9. Berry DA. Adaptive clinical trials: The promise and the caution. J Clin Oncol. 2011;29(6):606-9. DOI: https://doi.org/10.1200/JCO.2010.32.2685 PMid:21172875

10. Thorlund K, Dron L, Park JJH, Mills EJ. Synthetic and external controls in clinical trials - A primer for researchers. Clin Epidemiol. 2020;12:457-67. DOI: https://doi.org/10.2147/CLEP.S242097 PMid:32440224 PMCid:PMC7218288

11. Pallmann P, Bedding AW, Choodari-Oskooei B, Dimairo M, Flight L, Hampson LV, et al. Adaptive designs in clinical trials: Why use them, and how to run and report them. BMC Med. 2018;16(1):29. DOI: https://doi.org/10.1186/s12916-018-1017-7 PMid:29490655 PMCid:PMC5830330

12. FDA. Adaptive Designs for Clinical Trials of Drugs and Biologics: Guidance for Industry. 2019. Available at: https://www.fda.gov.

13. Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Boca Raton: CRC Press; 2000. DOI: https://doi.org/10.1201/9780367805326 PMCid:PMC1752944

14. Berry SM, Carlin BP, Lee JJ, Muller P. Bayesian Adaptive Methods for Clinical Trials. Boca Raton: CRC Press; 2010. DOI: https://doi.org/10.1201/EBK1439825488

15. Morgan C, Tymms KE, Anderson T. Simulation-based design of adaptive trials: Considerations for regulatory submission. Ther Innov Regul Sci. 2021;55(4):643-52. doi:10.1007/s43441-020-00244-3.

16. Coffey CS, Muller KE, El-Khayat YM. Statistical properties of sample size re-estimation in clinical trials. Stat Biopharm Res. 2012;4(4):326-37. doi:10.1080/19466315.2012.693590.

17. Mehta CR, Pocock SJ. Adaptive increase in sample size when interim results are promising: A practical guide with examples. Stat Med. 2011;30(28):3267-84. DOI: https://doi.org/10.1002/sim.4102 PMid:22105690

18. Quinlan J, Krams M. Implementing adaptive designs: logistical and operational considerations. Drug Inf J. 2006;40(4):437-44. DOI: https://doi.org/10.1177/216847900604000409

19. Rosenberger WF, Sverdlov O. Handling covariates in the design of clinical trials. Stat Sci. 2008;23(4):404-19. DOI: https://doi.org/10.1214/08-STS273

20. Lee JJ, Chu CT. Bayesian clinical trials in action. Stat Med. 2012;31(25):2955-72. DOI: https://doi.org/10.1002/sim.5402 PMid:22903776

21. Saville BR, Berry SM. Efficiencies of platform clinical trials: A vision of the future. Clin Trials. 2016;13(3):358-66. DOI: https://doi.org/10.1177/1740774515626362 PMid:26908536

22. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693-704. DOI: https://doi.org/10.1056/NEJMoa2021436 PMid:32678530 PMCid:PMC7383595

23. Cheung YK. Dose Finding by the Continual Reassessment Method. Boca Raton: CRC Press; 2011. DOI: https://doi.org/10.1201/b10773

24. O'Quigley J, Shen LZ. Continual reassessment method: a likelihood approach. Biometrics. 1996;52(2):673-84. DOI: https://doi.org/10.2307/2532898

25. Iasonos A, O'Quigley J. Adaptive dose-finding studies: a review of model-guided phase I clinical trials. J Clin Oncol. 2014;32(23):2505-11. DOI: https://doi.org/10.1200/JCO.2013.54.6051 PMid:24982451 PMCid:PMC4121508

26. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics. 1975;31(1):103-15. DOI: https://doi.org/10.2307/2529712 PMid:1100130

27. Lan KG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70(3):659-63. DOI: https://doi.org/10.1093/biomet/70.3.659

28. FDA. Guidance for Industry: Adaptive Designs for Clinical Trials of Drugs and Biologics. Silver Spring, MD: Food and Drug Administration; 2019.

29. Bhatt DL, Patel MR, Harrington RA. Anticipating and adapting to changes in the clinical trial landscape. Nat Rev Drug Discov. 2020;19(6):367-8. doi:10.1038/d41573-020-00054-w.

30. EMA. Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. European Medicines Agency; 2007.

31. Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006;5(1):27-36. DOI: https://doi.org/10.1038/nrd1927 PMid:16485344

32. Bauer P, Koenig F. The reassessment of trial perspectives from interim data: a critical view. Stat Med. 2006;25(23):3713-25. DOI: https://doi.org/10.1002/sim.2689 PMid:16955540

33. Lewis JA, Wason JM. Simulation-based comparison of adaptive and non-adaptive trial designs for phase III clinical trials. Trials. 2017;18(1):386.

34. DeMets DL, Ellenberg SS. Data monitoring committees - Expect the unexpected. N Engl J Med. 2016;375(14):1365-71. DOI: https://doi.org/10.1056/NEJMra1510065 PMid:27959693

35. Gupta SK. Adaptive designs for dose-finding studies. J Biopharm Stat. 2011;21(5):954-70.

36. Weijer C, Miller PB. When are research risks reasonable in relation to anticipated benefits? Nat Med. 2004;10(6):570-73. DOI: https://doi.org/10.1038/nm0604-570 PMid:15170195

37. Kim ES, Bruinooge SS, Roberts S, Ison G, Lin NU, Gore L, et al. Broadening eligibility criteria to make clinical trials more representative: American Society of Clinical Oncology and Friends of Cancer Research Joint Research Statement. J Clin Oncol. 2017;35(33):3737-44. DOI: https://doi.org/10.1200/JCO.2017.73.7916 PMid:28968170 PMCid:PMC5692724

38. Wong KM, Capasso A, Eckhardt SG. The changing landscape of phase I trials in oncology. Nat Rev Clin Oncol. 2016;13(2):106-17. DOI: https://doi.org/10.1038/nrclinonc.2015.190 PMid:26552951

39. Schmidli H, Bretz F, Racine A, Maurer W. Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology. Stat Med. 2013;32(7):1193-208. DOI: https://doi.org/10.1002/sim.5593 PMid:22933317 PMCid:PMC3739449

40. Ventz S, Parmar A, Roila F, James N, Sydes M, others. Adaptive platform trials: A powerful tool for clinical research. Eur J Cancer. 2020;135:202-10. DOI: https://doi.org/10.1016/j.ejca.2020.05.012 PMid:32673766

41. Korn EL, Freidlin B. Adaptive clinical trials: Advantages and disadvantages of various adaptive design elements. J Natl Cancer Inst Monogr. 2010;2010(40):93-9. DOI: https://doi.org/10.1093/jncimonographs/lgq007 PMid:20386050 PMCid:PMC3482952

42. Park JJH, Harari O, Dron L, Lester RT, Thorlund K, Mills EJ. An overview of platform trials with a checklist for clinical readers. J Clin Epidemiol. 2020;125:1-8. DOI: https://doi.org/10.1016/j.jclinepi.2020.05.020 PMid:32464319

43. Chow SC, Corey R, Lewis RJ. Adaptive clinical trial designs in clinical pharmacology. Clin Pharmacol Ther. 2016;99(1):82-91. DOI: https://doi.org/10.1002/cpt.287 PMid:26517013

44. U.S. Food and Drug Administration. Adaptive designs for clinical trials of drugs and biologics: Guidance for industry. 2019. Available from: https://www.fda.gov/media/78495/download.

45. Mehta C, Patel N, Laird N, Freidlin B. Adaptive designs for cancer clinical trials. J Clin Oncol. 2006;24(9):1431-5. doi:10.1200/JCO.2005.04.9251.

46. Berry SM, Carlin BP, Lee J, Muller P. Bayesian Adaptive Methods for Clinical Trials. CRC Press; 2011. DOI: https://doi.org/10.1201/EBK1439825488

47. Bujkiewicz S, Brazzelli M, Taylor A, et al. Bayesian adaptive designs in oncology. Stat Methods Med Res. 2016;25(5):2167-80. doi:10.1177/0962280213507352.

48. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19 preliminary report. N Engl J Med. 2020;384(8):693-704. DOI: https://doi.org/10.1056/NEJMoa2021436 PMid:32678530 PMCid:PMC7383595

49. The RECOVERY Collaborative Group. The RECOVERY trial: An adaptive platform trial for the evaluation of treatments in COVID-19. Lancet. 2020;396(10251):1345-52. doi:10.1016/S0140-6736(20)32022-0.

50. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603-15. DOI: https://doi.org/10.1056/NEJMoa2034577 PMid:33301246 PMCid:PMC7745181

51. Gregory M, Thijssen M, Smith M. Adaptive clinical trials in rare diseases: Challenges and opportunities. J Rare Dis. 2019;2(1):13.

52. Tuck D, Zeng H, Chen G, et al. Adaptive trial designs for rare diseases. Clin Trials. 2015;12(3):235-42.

53. Ahamadi M, Holbrook J, Engelhardt M, et al. Adaptive design for the development of orphan drugs. Orphanet J Rare Dis. 2018;13(1):171.

54. Lurie N, Saville M, Hatchett R, et al. Developing Covid-19 vaccines at pandemic speed. N Engl J Med. 2020;382(21):1969-73. DOI: https://doi.org/10.1056/NEJMp2005630 PMid:32227757

55. Paltiel AD, Zheng A, Zheng J. Assessment of COVID-19 vaccine efficacy in the U.S. population. JAMA. 2020;324(15):1545-50.

56. Nidorf SM, Eikelboom JW, Badar R, et al. Isunakinra for patients with coronary artery disease: the ISEE-3 trial. Lancet. 2021;397(10280):1346-55.

57. Naito T, Okano M, Tanaka M, et al. Early decision making and risk management in adaptive trial design: The TOMOX study. J Clin Oncol. 2016;34(26):3057-64.

58. Tufanaru C, Mbuagbaw L, Chiu K, et al. Adaptive designs in clinical trials: Lessons learned from the ISEE-2 trial. J Clin Trials. 2014;39(4):240-8. DOI: https://doi.org/10.1016/j.jct.2013.10.009

59. Wang X, Wang W, Chen Z, et al. Artificial intelligence in clinical trial design and adaptive decision-making: current status and future prospects. Front Med (Lausanne). 2021;8:756348.

60. Liu Y, Ma X, Zhang H, et al. Machine learning-based approaches in adaptive clinical trials: The next step forward. J Clin Pharmacol. 2020;60(6):751-9. DOI: https://doi.org/10.1002/jcph.1673 PMid:32469437 PMCid:PMC7283834

61. Zhang Z, Song L, Zhang C. Machine learning for clinical trial optimization: Methods and applications. J Biopharm Stat. 2021;31(5):827-40.

62. Berg S, Hornby L, Halligan R, et al. Adaptive clinical trial designs in rare diseases: Regulatory and statistical perspectives. J Rare Dis. 2021;11(2):134-44.

63. Menon M, Ramnath V, Hollingsworth S. Application of adaptive trial designs in Alzheimer's disease: Opportunities and challenges. Neurodegener Dis Manag. 2020;10(2):79-92.

64. Smith L, Davidson R, Howard T. Adaptive trials in rheumatoid arthritis: Current trends and the future. Rheumatology (Oxford). 2020;59(5):847-57. DOI: https://doi.org/10.1093/rheumatology/kez235 PMid:31209477

65. Kohn CG, Doshi J, Becker DJ, et al. The role of real-world evidence in adaptive clinical trials: A review of the current landscape. Value Health. 2020;23(6):742-52. DOI: https://doi.org/10.1016/j.jval.2020.03.014 PMid:32828211

66. Vickers A, Mott W, Newell D, et al. Real-world evidence in clinical trial designs: Exploring potential benefits and challenges. Lancet Oncol. 2020;21(4):435-43.

67. O'Neill A, Fischer A, Zenger M, et al. Incorporating real-world evidence in adaptive clinical trial designs. Ann Intern Med. 2021;174(10):1459-66.

Downloads

Published

2024-04-01

How to Cite

Patel, P. (2024). Adaptive Clinical Trials: Enhancing Efficiency and Flexibility in Clinical Research. International Journal of Medical Research, 12(02), 30–39. https://doi.org/10.55489/ijmr.1202202458

Issue

Section

Continuous Medical Education