Listeriosis: Bridging the Gap with Integrated Surveillance Among Livestock and Humans

Authors

  • Vaibhav Gharat Department of Community Medicine, GMERS Medical College, Navsari, Gujarat, India

DOI:

https://doi.org/10.55489/ijmr.1202202457

Keywords:

Listeria monocytogenes, integrated surveillance, One Health, zoonotic diseases, molecular epidemiology, environmental monitoring

Abstract

Listeria monocytogenes, a Gram-positive bacillus, remains a critical public health challenge due to its zoonotic potential and environmental ubiquity. This pathogen causes listeriosis, a severe foodborne disease with high mortality rates, particularly in immunocompromised individuals, neonates, and pregnant women. This article examines the epidemiology of listeriosis and emphasizes the necessity of integrated surveillance frameworks that address its transmission across livestock, humans, and the environment. By adopting the One Health approach, integrated surveillance leverages molecular epidemiology, whole-genome sequencing (WGS), and environmental monitoring to track outbreaks and elucidate transmission dynamics. Livestock surveillance, encompassing routine sampling and genomic characterization, serves as a foundation for early detection, while human surveillance integrates clinical diagnostics and outbreak investigations through real-time data sharing networks. Environmental surveillance further complements these efforts by identifying ecological niches that sustain the pathogen. Despite significant advancements, challenges such as resource constraints and antimicrobial resistance underscore the need for enhanced laboratory infrastructure and interdisciplinary collaboration. This article underscores the importance of integrated surveillance in mitigating the public health impact of Listeria outbreaks and advancing global health security.

References

1. Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991;55(3):476-511. DOI: https://doi.org/10.1128/mr.55.3.476-511.1991 PMid:1943998 PMCid:PMC372831

2. Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect. 2007;9(10):1236-43. DOI: https://doi.org/10.1016/j.micinf.2007.05.011 PMid:17720602

3. Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, et al. Listeria-review of epidemiology and pathogenesis. J Microbiol Immunol Infect. 2007;40(1):4-13.

4. Huss HH, Jorgensen LV, Vogel BF. Control options for Listeria monocytogenes in seafood. Int J Food Microbiol. 2000;62(3):267-74. DOI: https://doi.org/10.1016/S0168-1605(00)00347-0 PMid:11156271

5. Moura A, Tourdjman M, Leclercq A, Hamelin E, Laurent E, Fredriksen N, et al. Real-time whole-genome sequencing for surveillance of Listeria monocytogenes, France. Emerg Infect Dis. 2017;23(9):1462-70. DOI: https://doi.org/10.3201/eid2309.170336 PMid:28643628 PMCid:PMC5572858

6. Schlech WF. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol Spectr. 2019;7(3):1-20. DOI: https://doi.org/10.1128/microbiolspec.GPP3-0012-2018 PMid:31373270 PMCid:PMC6684298

7. Carpentier B, Cerf O. Review-Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol. 2011;145(1):1-8. DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.01.017 PMid:21315469

8. Jackson BR, Salter M, Tarr C, Conrad A, Harvey E, Steinbock L, et al. Notes from the field: Listeriosis associated with stone fruit-United States, 2014. MMWR Morb Mortal Wkly Rep. 2015;64(10):282-83.

9. Buchanan RL, Gorris LG, Hayman MM, Jackson TC, Whiting RC. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017;75:1-13. DOI: https://doi.org/10.1016/j.foodcont.2016.12.016

10. Weller D, Andrus A, Wiedmann M, den Bakker HC. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol. 2015;305(2):223-34. DOI: https://doi.org/10.1016/j.ijmm.2014.12.015 PMid:25601631

11. Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE. Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg Infect Dis. 2013;19(1):1-9. DOI: https://doi.org/10.3201/eid1901.120393 PMid:23260661 PMCid:PMC3557980

12. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517-525. DOI: https://doi.org/10.1093/nar/gkz935 PMid:31665441 PMCid:PMC7145624

13. Grindle M, Karanfil O, Liang T, Smith G, Wang Y, Zhang Y. Socioeconomic determinants of Listeria infection risk: A spatial analysis. Epidemiol Infect. 2021;149:e106. doi:10.1017/S095026882100068X.

Downloads

Published

2024-04-01

How to Cite

Gharat, V. (2024). Listeriosis: Bridging the Gap with Integrated Surveillance Among Livestock and Humans. International Journal of Medical Research, 12(02), 26–29. https://doi.org/10.55489/ijmr.1202202457

Issue

Section

Perspective